
Lecture 5

· Recap
· Plane waves I cont.
· Radiation gr a moving charge:Lienard Wiechert potentials
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denation Lienard-Wiechert potentials .

We will find the EM fields produced
by a point-like charge q moving along
a trajectory Xolt · This corresponds
to the charge density and the currant:·
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For a charge at a given moment in time

the pot . is given by the Greens
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It is natural to use Gret because

we do not want to consider the



field that "existed belore the charge .
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Let's show that solution exists :
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We will denote solution o e(+1) = 0

as tx
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to evaluate it we
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· Non-relativistic limit :
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In the relativistie case it is

important to distinguish the radiation

emitted in the diame of the particle :

dt &t !
/

-> > - >= atot It' it i p- n

151 = 1 1- B- -> D

El

·Rectilinear motion :

2

B11 is 9· -
2

-> Sin L
q
-

dadt' -

As
=

Ac
- BcsO)

total
power: = 8 Vis2



Desination :
-

I

f = fax- x2) -

p-

o D-Bcosd)5
- I

D - px)5

B - 1 . 5-C all radiation near On0
I

I

~-i e 2 -

1-P
11 -B)

Sin o
?

-

- -

De Basa)
5

1 - 91- )
-

-

- zjtoa
5 I - 5

(1 + 020)

= ins
(ay)

=
=

I
is mas

.




